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Highlights:
* Open source R-package WASP for modelling and ptiedicatural system responses.
* The package modulates the variance in waveletfoanations to improve the match
between predictors and the response of interest.
* The inclusion of an alternative wavelet transforrercomes the issue of future
information dependence in discrete wavelet tramsfor
 The approach is demonstrated with an applicatiorchtaracterise drought using

climatic indicators across Australia.

Abstract

This work presents an open-source tool to predattimal system responses by transforming
the frequency spectrum of predictor variables teat¥ a response that better resembles
observations. The R package, namely WAvelet Systeediction (WASP), is based on a
discrete wavelet transform (DWT)-based variancensti@@mation method. We further
introduce the maximal overlap DWT (MODWT)-basediaace transformation which allows
the method to be used in forecasting applicatigvis.also develop the method to include an
unbiased estimator that mitigates the well-knovauésof edge effects in wavelet transforms.
The predictive model in the method is a k-nearesghbor (knn) approach. The main
functionalities of the software include: (1) tramshing the system predictors, (2) identifying
significant predictors corresponding to the respoi8) predicting target response using the
knn. Results of predicting sustained drought anmsakhcross Australia show clear

improvements in predictive skill compared to the oguntransformed predictors.



Keywords. Wavelet system prediction; R-package; Maximal rlage discrete wavelet
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Softwar e availability

The open-source R-package WASP is available forntlmad from the following website

http://www.hydrology.unsw.edu.au/software/WASP anesults in this work are fully

reproducible through the Rmarkdown in the vignetiEshis R-package. Source codes are

available, along with help-files and example datassed to generate the outcomes reported.



1. Introduction

A regression model describes the relationship batwe system response and a finite set of
predictor variables using an assumed modelling f@mmear or nonlinear). Approaches can
range from simple regression models using a rarfg@hgsically justifiable predictor
variables (Hertig & Tramblay, 2017) to those wheraere complex transformations including
rotations are adopted (Jiang, Sharma, & Johnsoi9;28dehedehe, Agutu, Okwuashi, &
Ferreira, 2016). Differing spectral attributes inresponse and a system predictor can
complicate specifying the system-prediction modale present here an approach that
addresses this difficulty by optimally transformirgpch predictor variable to better
characterise the spectrum of the response beingliedd The underlying idea behind the
approach here is to improve the modelling of natayatems where the potential predictor
variables vary at time scales that differ from #ho$ the plausible response. For example, in
hydrology, daily precipitation is used to predieta@hment streamflow. However, attenuation
from catchment storage means that at short timesdhe variability of streamflow is
substantially dampened compared to rainfall. Thosiventional regression modelling
approaches can have difficulties in characterisimg differing variability and formulating a
relationship (Rashid & Beecham, 2019). Although #pproach is generic and can be used
for any natural system model, our specific focusors hydro-climatological systems. An
example of such a prediction problem is the neeass®ss changes to natural systems due to
climate change. In this case, Earth System Modet¥/oa General Circulation Models
(GCMs) provide predictors that can be used to mddaire changes in hydrological

variables.

Alternatives to transfer the modelling problem inb@ frequency domain include methods
such as Fourier and wavelet transforms. Our approges wavelet theory to formulate an
optimal model of the system to improve the assestmk changes into the future. The
wavelet transform (WT) is adopted in the approazfavoid loss of temporal information
when transforming to the frequency domain usingoariér transform (Daubechies, 1990;
Strang, 1996; Torrence & Compo, 1998). The WT caoothpose the original time series
into separate large-scale (slowly changing, lovgudency) and fine-scale (rapidly changing
details, high frequency) time series. A number oflels based on frequency domain analysis
have been proposed recently to simulate and prédkcvariability in the response (Fahimi,
Yaseen, & El-shafie, 2017; Nguyen, Mehrotra, & Stmar 2019; Quilty, Adamowski, &
Boucher, 2019; Rashid, Johnson, & Sharma, 2018y,S201.3). Most of those applications



directly use the decomposed time series to forebaghrget response (Quilty & Adamowski,
2018; Rashid, Beecham, & Chowdhury, 2016). Jiahgyi®a, and Johnson (2020) proposed
a new approach by using the decomposed time deriesconstruct a new set of predictor
variables that can explain maximal information e tresponse. They showed that this
approach can significantly improve the performaaotéhe regression model, when applied
firstly to synthetic data and a drought index dovalisig case study at fifteen rainfall gauges
in Sydney, Australia. However, the original methsdimited to prediction problems where
the future state of the predictors is “known”, whis due to the mathematical properties of
the discrete wavelet transform (DWT). If a foreagagtmodel is required then DWT is not
suitable because this wavelet transform requiresdunformation (which is not available in
a forecasting setting) to predict the target respo(Du, Zhao, & Lei, 2017; Quilty &
Adamowski, 2018). To address this issue, other leaveansformations can be used to
implement the variance transformation, including thaximal overlap DWT (MODWT) and
a trous algorithm (AT). In this case, DWT can bglaeed with MODWT or AT, which have
no dependence on future information (Nason, 20@8ityQ& Adamowski, 2018). Therefore,
we have included the MODWT and AT based varianaasfiormation into the WASP R-
package. Alternatively, when considering climatarade projections, the DWT forecasting
problem is overcome because reliable future prigjestof the predictors are available from
GCMs although the target response is unknown goriggection is not reliable as shown by
Rashid et al. (2018) and Fowler, Blenkinsop, anblalai (2007).

Another issue in using wavelet-based methods ihwedd applications is the edge effects
resulting mainly due to limited sample sizes, d#dsown as the error due to the boundary
condition that is associated with wavelet decontmwss, including wavelet and scaling
coefficients (Percival & Walden, 2000). Howevererth are ways to reduce the effects of
boundary bias in wavelet transformations. An estimaxcluding the boundary coefficients
is regarded as an unbiased wavelet variance estinf@brnish, Bretherton, & Percival,
2006). This logic can be applied to the proposethmae transformation method, which leads
to an unbiased variance transformation. Thus, tethadological contributions of this study
are to: (1) generalise the wavelet-based variarargsformation method to allow it to be
applied in forecasting problems and (2) developuabiased variance transformation. This
substantially broadens the application of the psepomethod across a wide range of systems

beyond the simplified illustrations in Jiang et(@020).



The approach outlined above is embodied in the Vi&&vBystem Prediction (WASP) R-
package, and consists of three key functions. Tise flinction finds the optimal variance
transformation for each predictor variable of ies#r reconstructing a new predictor with
complimentary spectral attributes to the predictdariee second function identifies significant
reconstructed predictors using partial informatlamarelation (PIC). PIC is used to measure
the dependence between a given response and thestewted new predictor conditioned to
pre-existing predictor(s) (Sharma, 2000; Sharma &hMtra, 2014). The last function is the
predictive model, which is &nearest neighbor (knn) estimator using a kerngtession
function (Lall & Sharma, 1996; Sharma et al., 199%) additional contribution here is that

the knn estimator has been modified to better aftovextrapolation.

In this study, we implement the MODWT-based andiasdd variance transformation in the
R-package WASP and evaluate it on a large scalbydfo-climatological system. For

instance, sustained droughts are natural hazasigiated with a range of climatic factors
such as low precipitation and high temperatures @otdntial evapotranspiration (Sheffield,

2011). These climatic factors are in turn affedigdarge scale climate teleconnections which
vary over periods of years to decades (e.g., EbNBduthern Oscillation and India Ocean
Dipole) (Mishra & Singh, 2010), as well as longntetrends from anthropogenic climate
change (Dai, 2013; Sheffield & Wood, 2008). Thusught is a result of the interactions of a
large number of variables all of which have verjfalent spectral properties. Here the
variance transformation method is demonstrated loglaing and predicting sustained

drought anomalies for Australia as representedbystandardized Precipitation Index (SPI).

2. Methodology

2.1MODWT-based variance transformation

In this section, we first introduce the original DWased variance transformation and then
extend it to include the MODWT-based variance tamsation. Full details and derivation
of the variance transformation are provided in diat al. (2020). A summary of the
important steps is provided here. Consider a setpaired centred (i.e., with mean of zero)

observations of the predictor variablX and the response variabley, i.e.,
(%1 Yo)s- - -» (%1, Y1), First, the signak is decomposed into a vector of coefficients matrix

W=[D, ... D,, A]] with a dimension oh x1 using the DWT. The coefficients matrix is then



reconstructed into a matrix of frequency componéﬂﬁ[qw-,q,a], and the associated

. . . . _ T .
variance structure of these sub-time series isngive | —[Udl,...,UdJ,JaJ] (Percival &

Walden, 2000). This is so-called multiresolutioralgsis (MRA). Here,J is the highest
decomposition level, which will be further discusse the section of unbiased variance
transformation. The property of DWT ensures that shm of the variance of the sub-time

J+1

1
series equals the variance of the original timéesgxvhich meanil 2 -n—lx X =0}
j=1 -

Accordingly, X can be written as a matrix multiplicatiok = Rl with the standardized
reconstruction matrixR =[d,,...,d,,4,] . The variance transformation is achieved by

reconstructing a new predictdf’” with variance structurer similar to the corresponding

response in the frequency domain. They can beenrds:

A

X'=Ra

a=0,C

(1)

where¢ is the normalized covariance of the variable(sfetl-ci), and the covarianc€ has

the form of

CzﬁYTﬁz[SA,...,SY&J S, |- 2

Yd,

Essentially, the reconstructed new predietbrs obtained by redistributing the variance in its
spectrum and it has the same total variance asotiggnal predictorX. All potential
predictors will be reconstructed with this operatiand a reconstructed new set of predictors
is then used for predictor selection and respomnseigtion. Assuming that the variance
transformed predictor is used to predict the assediresponse with simple linear regression,
we can derive the theoretical optimal predictionuaacy as measured by Root Mean Square
Error (RMSE):

where 4, denotes the standard deviation of the resp¥nse

The method originally proposed by Jiang et al. 02quires both additive decomposition
(i.,e., MRA) and variance decomposition (i.e., eydogsed decomposition). To extend the



method to consider forecasting problems, the DWT loa replaced by wavelet approaches
that do not include future time steps (such as MAD&vid AT). However, for the above
derivation to be valid then the new wavelet appheameed to also fulfill the requirement for
additive and variance decomposition. Both MODWT a&adfulfill these two requirements
only when the Haar wavelet filter (equivalent toubachies 1, db1 or d2) is adopted. When
the Haar wavelet filter is used MODWT and AT areuigglent (i.e., lead to the same
decomposed frequency components). Therefore, fecésting applications, WASP has been
extended to include MODWT with the Haar waveletefilas the basis for the variance
transformation. There is a potential risk that sppectrum of the variables of interest cannot
be characterized well because the wavelet filtémged to the Haar wavelet filter. However,
the logic can be applied to both MODWT and AT wingher wavelet filters are adopted, as

they provide additional ways to characterize thectpim of variables of interest.

Another advantage of using MODWT is that thereagestriction on the dyadic sample size.

Briefly, MODWT decomposes the original time senésito anx(J+1) matrix of wavelet and
scaling coefficientéﬁ/:[ﬁl, f)J : A,], and the associated standard deviation matrixeng

by | =[0; vor10p 1O ] . MODWT also ensures variance decomposition, whigkans

J+l 1
lez:n_lx X 20)2(. This provides a way to investigate and transfdh®a variance
= _

structure of the coefficients matriw , directly. As a result, using the covariar€eof the

variable set(Y ,W) the variance transformeétl can be obtained given by the equation:

X = @)
a=0,C
whereVi/ is the standardized coefficients matvix. It is noted that the coefficients matrix
W decomposed from DWT has the dimensionnofl while the coefficients matrixv
from MODWT has a dimension ofx(J+1). Expect for the independence on future
information, this is another reason the coeffigematrix of MODWT can be directly used

for variance transformation.



2.2Unbiased variance transformation

The second methodological contribution of this gtisdto solve the issue of boundary bias in
applying wavelet-based methods. Boundary relatedess are due to sample size, the choice
of decomposition level, as well as wavelet filtBable 1 summarizes the size of the boundary
effects for both types of wavelet transforms. Aswh in the table, the number of non-
boundary coefficients depends on the sample $izetlle decomposition levej)( and the
width of wavelet filter ). The multiresolution analysis of DWT is affectatthe beginning
and the end of the sub-time series while MODWT idy caffected at the start of the
decomposed components. It is clear that shorteelst¥ilter, longer time series or lower
decomposition level leads to a smaller number afmidary coefficients. In wavelet theory,
the exclusion of boundary coefficients in wavel@riance estimation is called unbiased
estimator (Cornish et al., 2006). There is a smaliference between biased and unbiased

estimates when fewer boundary coefficients nedubtexcluded.

Here we propose to adopt the unbiased varianceftiamation by computing the covariance
using only the non-boundary coefficients as follows

_n{ Y R (5)

c'=

where the asterisk * implies the unbiased valﬁ%.(or V\:/D) Is the standardized matrix
excluding boundary coefficients, a@! is a vector of unbiased covariance. It is worthntp
that the unbiased estimator can only be computeddme decomposition levels. However,
the nature of variance transformation requires tgredecomposition levels thus we still use
the biased estimator whenever the unbiased estinstwot available. The introduction of
unbiased variance transformation is not likely harmge the model performance substantially

when a shorter wavelet filter is used and larger@a size is available.

Table 1 Summary of the size of boundary effects

Total number of Non-boundary

Wavelet Method Beginning of the signal End of the signal boundary coefficients  coefficients

DWT-MRA t=0,1,...,.L-2 t=N-1,N-2, .. N-L+1 2(L-1) N-2(L-1)

MODWT t=0,1,...,Lj-2 - Lj-l N-Lj+1

Note: The width of th¢-th level wavelet or scaling filtelrj = (i—l)(L—1)+1, wherd. is the width of thg=1 base
filter.



2.3 Partial informational correlation

The wavelet-based variance transformation appraatdpts PIC, which takes the partial
dependence between predictors and the responsadotant to identify significant (in this
case variance transformed) predictors. A short rgggmn of the logic behind PIC is
presented here, and readers are referred to SHa008a), Galelli et al. (2014) and Sharma
and Mehrotra (2014) for additional details, as wadl to Sharma, Mehrotra, Li, and Jha
(2016) for the software, known as NPRED, needesstonate the PIC.

The partial information (PI1) is based on informatitheory and measures the dependence
between the respons¢é and a potential predictoX of the response given pre-existing

predictor(s)Z. Thus, a sample estimate Bf (Y, X | Z) is written as:

_ 1 for e (Y 1Z,%,12)
PI(Y,X |Z)==)log, [—22E " '
(Y, X 12)="3 log,

[ 6
= fY|Z(YiIZ)fX|Z(Xi |Z) ©)

whereY; andX; is thei-th bivariate sample data pair in a sample of size |z and X |z

are partial response and partial independent Vatialhich represent the residual information

in variablesY; and X;, when the effect of pre-existing predictor@&)has been taken into
account. fy, (Y [Z), Ty, (X 1Z) and f;; (Y 1Z,X |Z) are the respective marginal and

joint probability densities using kernel densityi@stion. The Pl can be scaled to the range

from O to 1, which is introduced as the PIC:

FTIE=\/1—exp(—2|5I\) (7).

Thus, the PIC is a generic measure of conditioregeddence, where 0 represents no

dependence and 1 represents perfect dependenceagure of statistical significance for the

m
t=PIC /1—PIC2 8)

wheret follows the Student’s distribution withm=n-| degrees of freedom, withbeing the

PIC is also required,

number of observations ardthe number of conditioning variables. This is uded the
stopping criterion when selecting the significamedgictor variable(s). Given a certain

significance levep (we used=0.1 in the case study), when the estimated P&nigller than



an associated threshold BIfor all the remaining partial predictors, the sélen process will

be terminated.

2.4Modified k-nearest neighbor regression estimator

Selecting a predictive model is generally basethemature of the modelling system as well
as the modeler's experience. Regression methods haen widely solved by using the
parametric least squares estimator approach. Nav@dric models can also be used with
the advantage that fewer assumptions about thebdibn of the population are required. In
this study, the nonparametric knn method was usegrediction.

The key of the knn method is to find the closestesbations tox in the training dataset to

form Y. Specifically, the knn fit for is defined as follows:

V(¥ :% Sy ©)

% 0N ()

where N(¥ is the neighbourhood of defined by thek closest pointsX in the training

sample (Friedman, Hastie, & Tibshirani, 2001). Theseness is a distance metric, which can
be defined by Euclidean distance, as well as a eaofj alternate distance metrics
(Weinberger, Blitzer, & Saul, 2006). Mehrotra andaBna (2006a) argue for the use of a
weighted Euclidean distance using a discrete keki{gl with weights estimated based on the
partial importance each predictor exerts on theaese. In this current study, a linear
extrapolation of the associated response basetherdvariance of the predictor-response
dataset was implemented. This is required becausenwconsidering climate change
projections future predictor values may exceedréimge of the observed data over which the
knn model is trained. This subtle modificatiorb@&sed on the kernel regression as described
by Sharma et al. (1997):

Sy =L T o1y
Y0y = 0 mzm(yi +S5,S (% = X))

1/i (10)

k

D 1
i=1

K@) =

where Sy and Sy represent the covariance matrix for the varialde (8 y) and &, x),

respectively.
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3. WASP R-package structure

3.1 Details of the software

Figure 1 is a flowchart of the proposed methodwshg the general process that is required
for the variance transformation technique. Thisoatgm is implemented in the R library
WASP software. A detailed help-file for each funcatiand test data are provided in the

package as well.

Start: Given a set of predictors X, an
initially empty predictor vector Z, and a
target response Y.

'

Step 1: Reconstruct a new set of predictors
X' by variance transformation.

Step 2: Compute the partial response ¥Y|Z |
and the partial predictors X'|Z.

!

Step 3: Estimate PIC between the partial

response Y|Z and the partial predictors Step 4: Include the identified
X'Z. The predictor X with maximum significant predictor X' in predictor
PIC’ is selected and stored for the vector Z and remove X' from X'.
moment. yY
PIC>PIC, YES
NO
v

Step 5: Predicted the response ¥ using
identified and variance transformed X' with
the modified knn model.

Figure 1 Flowchart of the proposed variance transformation method
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In summary, the R package consists of built-in fioms for variance transformation
operation for calibration (“dwt.vt”, “modwt.vt”, ah“at.vt”) and validation (“dwt.vt.val”,
“modwt.vt.val’, and “at.vt.val”’) based on DWT, MODW and AT, respectively; the option
of unbiased variance transformation for each vaeamansformation method is included in
these functions with flag = c(“biased”, “unbiased’gnd the modified knn regression
predictive model (“knn”). There are several supmatary functions, including padding
function (“padding”) which extends the data to pdeva dyadic sample size for the DWT-
based variance transformation, and three syntdatia generator functions used in Jiang et al.
(2020). Each of these codes come with associatgdfites that provide guidance on their
use. As described in the following section, datf®im the drought prediction case study are
provided in the package, and all the results regorh this paper are reproducible using
RMarkdown provided in the vignettes of this R-papkaFigure 2 is a screenshot of the
sequence of R commands illustrating the usage ®fWASP package to transform the
potential predictors (see Figure S 1 in the Suppgpmaterial for an example of predictor
variables before and after variance transformatmmesponding to the response), identify the
significant predictors, and predict the associaesponse. MODWT is adopted as the basis
of wavelet transform in this case study since we @wsing observed data to predict target
response and thus there is no dependence on fuforenation. All codes and data in the

package are open source.
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#load response and predictor variables

data(spPI1.12); data(data.CI); data(Ind_AwWAP.2.5)

#study grids and period

Grid = sample(Ind_AwAP.2.5,1)

SPI.12.ts <- window(SPI.12, start=c(1910,1),end=c(2009,12))

data.CI.ts <- window(data.CI, start=c(1910,1),end=c(2009,12))

#partition into two folds

folds <- cut(seq(l,nrow(SPI.12.ts)),breaks=2,Tlabels=FALSE)

sub.cali <- which(folds==1, arr.ind=TRUE); sub.vali <- which(folds==2, arr.ind=TRUE)

###calibration and selection
data <- 1ist(x=SPI.12.ts[sub.cali,Grid],dp=data.CI.ts[sub.cali,])

#variance transformation - calibration
dwt <- modwt.vt(data, wf="d4", 1=8, pad="zero", boundary="periodic")

#stepwise PIC selection
sel <- NPRED::stepwise.PIC(dwt$x, dwt$dp.n)

###validation and prediction
data.val <- Tist(x=SPI.12.ts[sub.vali,Grid],dp=data.CI.ts[sub.vali,])

#variance transformation - validation
dwt.val <- modwt.vt.val(data.val, J=8, dwt)

#knn prediction

cpy <- sel$cpy; wt <- selfwt

x=data$x; z=dwt$dp.n[,cpy]l; zout=dwt.val$dp.n[,cpy]
mod <- knn(x, z, zout, k=5, pw=wt, extrap=T)

Figure 2 Example of typical usage of modwt.vt and modwt.vt.val for the real case study at a sampled grid. Here the task isto
transform potential predictors (climate indices), identify the significant predictors, and predict the associated response
(SP112) using a modified knn model. Note that the predictor selection uses the stepwisePI C function directly fromthe
NPRED package.

It should be noted that when applying this methmdotecast a future response, we assume
that the conditional dependence between the pamdiariables and the response remains
unchanged into the future. Thus, the covariancenvdmt the response and wavelet
decompositions of predictor variables from histakidata is used for future predictions as
well as the fitted predictive model. To check tradidity of this assumption, we use cross-
validation by partitioning the historical data iftaur complementary subsets. One subset is
used as the validation set while other subsetsuseel as the calibration set. The results
presented hereafter are cross-validated resultthéoentire period. The rationale for using
cross-validation is that we can have a better ass&st of the model performance with
independent datasets (Mehrotra & Sharma, 2006by&lget al., 2019). It is important to
note however that in the context of anthropogehimate change, the range of future changes
will likely exceed those observed in the past sodioss-validation is not a perfect test of our

stationarity assumption for the predictor-respatieigendence structure.
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3.2 Prediction of Standardised Precipitation Inde&r Australia

The WASP package was applied to predict the SRigusarious climate indicators over
Australia to assess the impact the variance tramsfton makes. We adopted climate
indicators used in previous prediction of sustaifgdrologic anomalies using the SPI
(Rashid, Sharma, & Johnson, 2020) and further edgduthis dataset by including additional
climate drivers strongly influencing Australia chite (Cai & Cowan, 2013; Kirono, Chiew,
& Kent, 2010; Murphy & Timbal, 2008). Table 2 listee details of the climate indices
considered in this study. The monthly anomalieNliob3.4, PDO, and DMI are derived from
monthly sea surface temperature (SST) values ofdyadentre Global Ice and Sea Surface
Temperature (HadISST) datasets (Rayner et al.,)2@3M is calculated using sea level
pressure (SLP) from NOAA Earth System Research tabpoy's Physical Sciences Division
(PSD). The Australian Water Availability Project\\AP) gridded monthly rainfall metadata
is obtained from the Bureau of Meteorology (JoWgang, & Fawcett, 2009) and is regarded
as observations. The rainfall data was re-gridde2.5°x 2.5° over Australia using weighted
area average and the SPI for 12-month and 36-mpetiods (SPI112/SPI36) is calculated
(McKee, Doesken, & Kleist, 1993). Note that gridl€evhere more than 25% of rainfall
values are zero or missing are removed from theutations due to data reliability concerns
(Spinoni, Naumann, Carrao, Barbosa, & Vogt, 20B%).described previously, we split the

data into four equal subsets for cross-validatidre study period was 1910 to 2009.

Table 2 List of atmospheric variables considered in the study

Index No. Climate Indicator Abbreviation

East Central Tropical Pacific, the area averaged f&8n 5S-5N and 170- .

1 120W Nino3.4
Pacific Decadal Oscillation, the leading PC of niynSST anomalies in the

2 o PDO
North Pacific Ocean
Southern Annular Mode, the difference of zonal m8aR between 40°S and

3 65°S SAM
Indian Ocean Dipole, the anomalous SST gradientdzt the western

4 equatorial Indian Ocean (50E-70E and 10S-10N) hadouth eastern DMI

equatorial Indian Ocean (90E-110E and 10S-0N), daaseDipole Mode
Index

First of all, significant climate indicators wermdentified at each rainfall grid over Australia
using PIC from the set of four variance transforneéohate indices. In Figure 3, the most
significant drivers (i.e., the most frequently stézl predictor in the PIC process among the
four cross-validation subsets) for both SPI12 aRI36 are shown. In addition, four

randomly chosen grids that are used to examinergkalts in detail in this study are

14



highlighted with grid index numbers in red coloef@r to Figure S 2 in the Supporting
Material for the complete overview of grid indexesvAustralia). Table 3 summarizes the
most significant climatic driver selection usingtb@riginal and variance transformed (VT)
climate indices (see Figure S 3 in the Supportingtévlal for the selection results using

original climate indices).

As expected based on previous research, drougkistralia is significantly influenced by El
Niflo—Southern Oscillation (ENSO) (Cai, Van RensCbwan, & Hendon, 2011; Fierro &
Leslie, 2013; Pui, Sharma, Santoso, & Westra, 20%¥8stra & Sharma, 2010). For SPI12,
most grids (83%) are influenced by ENSO, and mioaa thalf of grids (89%) are sensitive to
ENSO for SPI136. On the other hand, the selectisnltg using original climate indices are
similar (i.e., ENSO is the main climatic driver Atistralia rainfall) with less grids affected
by ENSO patrticularly for SPI36. One interesting etvation is that there are several grids
where no climate drivers are identified as useafulgrediction if the original (untransformed)
climate indices are used because of the discrepamcithe temporal scale of the response
and the potential predictors. This demonstratesattheantage of variance transformation
technique in selecting predictor variables (Jiangle 2020). Another interesting outcome is
that the use of the variance transformation leads treduced selection of non-Pacific
variability indicators such as DMI and SAM in thesulting model, with these variables

being relegated to second or higher order predigtothe ensuing model.
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Figure 3 The most significant predictors identified using variance transformed climate indices over Australia for different
time scales of SPI. (a) SPI12 (b) SPI36 Four randomly sampled grids investigated in the study are indicated in red color.
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Table 3 Number of grid cellswith significant order 1 predictor variable of SPI over Australia with and without variance

transformation

Dlrr?(;‘g?t Model Nino34 PDO SAM  DMI Ifég
SPI12 VT 114 14 7 3 138
SPIz6 VT 123 11 4 0 138
SPI12 Original 98 13 12 13 136
SPI36  Original 63 38 22 12 135

Figure 4 (a) and (c) present the density plots lndeoved, predicted and predicted with
variance transformation SPI at the four random@ad grids. It is clear that the probability
distributions of predicted SPI using variance tfamaed predictors are closer to observed
SPI in the sampled grids. Its closeness can alsodasured by the PDF skill scores (Perkins,
Pitman, Holbrook, & McAneney, 2007), which are slmoiw Figure 4 (b) and (d). The value
of a PDF skill score ranges between 0 and 1, argptesents a perfect match. These results
suggest that the wavelet-based approach can capist@&ned drought/wet anomalies well. A
close look at the selection results in Table 4 gles more information about the benefits of
the proposed method. First, additional climate dadican be selected, which is likely to
result in considerable improvements at all gridscd®d, even when the same predictor
variables are selected (as the case in Grid 94bédh SPI12 and SPI36), the variance
transformation leads to improved characterisatibnsustained anomalies. Only a small
improvement is observed at Grid 142 for SPI12 a#ipplying variance transformation

because at this location reasonably good skill esained from the original predictors.
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Figure 4 Comparison between observed, predicted and predicted with variance transformation drought indices at four
sampled grids. SP112 (a) Density plot (b) PDF skill scores; SPI36: (c) Density plot (d) PDF skill scores.

Table 4 Rank of identified climate drivers by frequency at four sampled grids

Drought

Grid Index Model Nino34  PDO SAM DMI
Original 1 3 4 2

SPI12 \a) 4 1 2 3

% spi3e Original 1 4 2 3
VT 1 2 3 4

Original 1 - - 2

SPI12 VT 1 3 2 4

142 Original 1 3 2 -
SPIS6 1 2 3 4

Original 1 2 - -

SPI12 \a) 1 4 2 3

149 Original - 1 - 2
SPI36 \a) 1 2 3 4

177 SPI12  Original 2 1 3 -

17



VT 1 2 3 4
Original
VT 1 2 3 4

1
N
w
=

SPI36

Figure 5 (a) and (c), the improvement in PDF sdalbres (percentage relative to non-wavelet
models) for both SPI12 and SPI36 over Australiprssented. The wavelet-based method
provides improvements at around 99% and 97% ofsgod SPI112 and SPI36, respectively.
Grids with white areas represent grids with misgiiaga located in the central and western
desert of Australia (Jones et al., 2009), whilelgnvith black dots refer to locations with no
improvements after variance transformation is usedther, scatterplots in Figure 5 (b) and
(d) provide the magnitude of PDF skill scores agetls over Australia, and the model using
the proposed variance transformation technique esfdpms the reference model using
original climate indices. The biggest improvemetetsding to occur for locations that had
lower skill with the non-wavelet model consistenthathe results discussed above for Grid
142. It is noted that the improvements in predici@rformance of SPI36 are larger than for
SPI12, which results from possibly identifying addaracterising one of the known major

drivers of droughts in Australia (i.e., ENSO) usiragiance transformed climate indices.

What we have shown here represents the resultheoMODWT-based biased variance
transformation, with the results using the unbiasstilmator being given in Figure S 4 of the
Supporting Material. In addition, boxplots in Figu6 compare the model performance
between approaches using biased and unbiased ®stinfarst, the unbiased variance
transformation does show improved prediction aaoprawith all grids presenting

improvements while with the biased variance tramsédion there are several grids perform
worse than the reference model. Second, the urtbiz@ance transformation shows better
mean statistics in both drought indices with greateprovements in SPI36. There is no
significant difference in the two, which is duethe fact that the Haar wavelet filter has been

used and large sample size is available in this sagly.
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Figure 5 Comparison of PDF skill scores between original and variance transformed (VT) predictors with MODWT-based

biased variance transformation. SP112 (a) The percent improvement of PDF skill scores over space (b) Scatterplot of PDF
skill scores; SPI36: (c) The percent improvement of PDF skill scores over space (d) Scatterplot of PDF skill scores.
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Figure 6 Comparison of model performance between approaches using biased and unbiased estimator. Blue dots represent
the mean value of PDF skill scores.

Meanwhile, we have also done the experiments umdefolds cross-validation with varying
wavelet filter length seen in Table 5. The reswitsPDF skill scores show that first, the
unbiased variance transformation approach outperfiis alternative in both mean and
median statistics; second, larger differences betwtevo estimators are observed when we
adopt wider wavelet filters in both mean and medigatistics given the similar standard
deviation (SD) across all grids. It should be ndteat there is an exception when using d8 for
SPI112 (median) and SPI136 (mean) prediction theedifice of statistic gets smaller, which is
likely due to the violation of additive decompositiwhen other wavelet filters are adopted.
However, the results we show here confirm the aepurthat MODWT or AT can be applied

as the basis for variance transformation even whawvelet filters other than the Haar are

adopted.
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Table 5 Comparison of biased and unbiased variance transformation approach with varying wavel et filter length

Metric  SPI V‘?ﬁ‘t’ga Declgrl‘;psoag'on Biased Unbiased (Ungggd?gicz%d)
Haar(d2) 9 0.664  0.672 0.008
12 d8 8 0.658  0.685 0.027
e d16 7 0635  0.652 0.017
Haar(d2) 9 0679  0.699 0.020
36 d8 8 0.716  0.718 0.002
d16 7 0697 0719 0.022
Haar(d2) 9 0.659  0.678 0.019
12 d8 8 0.664  0.680 0.016
. d16 7 0632  0.653 0.021
Haar(d2) 9 0.684  0.703 0.019
36 d8 8 0703 0.724 0.021
d16 7 0.698  0.726 0.028
Haar(d2) 9 0.065  0.068 0.003
12 d8 8 0.060 _ 0.075 0.015
- d16 7 0.065  0.071 0.006
Haar(d2) 9 0.069  0.072 0.003
36 d8 8 0.064  0.068 0.004
d16 7 0.068  0.070 0.002

4. Summary and conclusions

The open-source WASP R-package contains the ceaesple datasets and help-files for
natural system prediction. We introduce the MODWAE4dd variance transformation, which
resolves the issues of future dependence. Morediverboundary related bias is addressed
using a newly proposed unbiased variance transtowmaBoth improvements have
broadened the application of wavelet-based varigrasesformation method. The use of the
wavelet-based variance transformation techniqudeimonstrated by predicting a drought
index over Australia using various climate indicdsit the logic represents a generic
approach not limited to modelling hydro-climatologi systems alone. This approach has
shown substantial improvements in predictive aaopraspecially in systems where the

response and plausible predictor variables hage ldifferences in their spectrums.

It is worth noting that this method provides a waypredict a target response in a complex
system without making assumptions and simplifieaiancluding characterising the form of
the underlying model that relates the two. Thisniplicitly undertaken by the variance

transformation technique thereby formulating asfarmed predictor that can be expected to
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have a concurrent relationship with the responseiramg improvement of predictivity in the
complex system. However, the proposed approachithasherent limitations and should be
applied with care. First, the boundary related hsaa curse, thus the selection of wavelet
family and the length of filters should be reatistjiven the nature of the physical
phenomenon with varying data length (Bakshi, 19848heswaran & Khosa, 2012; Percival
& Walden, 2000; Torrence & Compo, 1998). In additiahe rule of thumb of the
decomposition level by Kaiser (2010) is preferredlsthat the variance transformation is

done across the entire spectrum of the predictoalas (Jiang et al., 2020).

Lastly, while the logic presented here focussestla modelling of a single response,
extensions to modelling multiple responses are iplessFuture extensions of the proposed
logic will illustrate how we can extend the approdtere to multiple response variables,
while keeping the dimensionality of the predictiggstem small enough to maintain

robustness in predictions.
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Figure S1 Example of predictor variables before (solid red line) and after (dashed blue line) variance transformation
corresponding to the response SP112 (solid black line) at a sampled grid. (a) Calibration (b) Validation
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Figure S2 Map of grid index over Australia. Grids with missing data (i.e., where more than 25% of rainfall values are zero

or missing) are in white colour, while the investigated four randomly sampled grids are highlighted in red colour.
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Figure S3 The most significant climate indicesidentified using original climate indices over Australia for different time
scales of SPI. (a) SPI12 (b) SPI136 Note that girds with black dots refer to locations with no predictors being identified.
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Figure S4 Comparison of PDF skill scores between original and variance transformed (VT) predictors with MODWT-based
unbiased variance transformation. SP112 (a) The percent improvement of PDF skill scores over space (b) Scatterplot of
PDF skill scores; SPI36: (c) The percent improvement of PDF skill scores over space (d) Scatterplot of PDF skill scores.
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Highlights:

Open source R-package WASP for modelling and predicting natural system responses.
The package modulates the variance in wavelet transformations to improve the match
between predictors and the response of interest.

The inclusion of an alternative wavelet transform overcomes the issue of future
information dependence in discrete wavel et transform.

The approach is demonstrated with an application to characterise drought using

climatic indicators across Australia.
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