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Highlights:  

• Open source R-package WASP for modelling and predicting natural system responses.  

• The package modulates the variance in wavelet transformations to improve the match 

between predictors and the response of interest.  

• The inclusion of an alternative wavelet transform overcomes the issue of future 

information dependence in discrete wavelet transform.  

• The approach is demonstrated with an application to characterise drought using 

climatic indicators across Australia. 

 

Abstract 

This work presents an open-source tool to predict natural system responses by transforming 

the frequency spectrum of predictor variables to create a response that better resembles 

observations. The R package, namely WAvelet System Prediction (WASP), is based on a 

discrete wavelet transform (DWT)-based variance transformation method. We further 

introduce the maximal overlap DWT (MODWT)-based variance transformation which allows 

the method to be used in forecasting applications. We also develop the method to include an 

unbiased estimator that mitigates the well-known issue of edge effects in wavelet transforms. 

The predictive model in the method is a k-nearest neighbor (knn) approach. The main 

functionalities of the software include: (1) transforming the system predictors, (2) identifying 

significant predictors corresponding to the response, (3) predicting target response using the 

knn. Results of predicting sustained drought anomalies across Australia show clear 

improvements in predictive skill compared to the use of untransformed predictors.  
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Software availability 

The open-source R-package WASP is available for download from the following website 

http://www.hydrology.unsw.edu.au/software/WASP and results in this work are fully 

reproducible through the Rmarkdown in the vignettes of this R-package. Source codes are 

available, along with help-files and example datasets used to generate the outcomes reported. 
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1. Introduction 

A regression model describes the relationship between a system response and a finite set of 

predictor variables using an assumed modelling form (linear or nonlinear). Approaches can 

range from simple regression models using a range of physically justifiable predictor 

variables (Hertig & Tramblay, 2017) to those where more complex transformations including 

rotations are adopted (Jiang, Sharma, & Johnson, 2019; Ndehedehe, Agutu, Okwuashi, & 

Ferreira, 2016). Differing spectral attributes in a response and a system predictor can 

complicate specifying the system-prediction model. We present here an approach that 

addresses this difficulty by optimally transforming each predictor variable to better 

characterise the spectrum of the response being modelled. The underlying idea behind the 

approach here is to improve the modelling of natural systems where the potential predictor 

variables vary at time scales that differ from those of the plausible response. For example, in 

hydrology, daily precipitation is used to predict catchment streamflow. However, attenuation 

from catchment storage means that at short time-scales the variability of streamflow is 

substantially dampened compared to rainfall. Thus conventional regression modelling 

approaches can have difficulties in characterising this differing variability and formulating a 

relationship (Rashid & Beecham, 2019). Although the approach is generic and can be used 

for any natural system model, our specific focus is on hydro-climatological systems. An 

example of such a prediction problem is the need to assess changes to natural systems due to 

climate change. In this case, Earth System Models and/or General Circulation Models 

(GCMs) provide predictors that can be used to model future changes in hydrological 

variables.  

Alternatives to transfer the modelling problem into the frequency domain include methods 

such as Fourier and wavelet transforms. Our approach uses wavelet theory to formulate an 

optimal model of the system to improve the assessment of changes into the future. The 

wavelet transform (WT) is adopted in the approach to avoid loss of temporal information 

when transforming to the frequency domain using a Fourier transform (Daubechies, 1990; 

Strang, 1996; Torrence & Compo, 1998). The WT can decompose the original time series 

into separate large-scale (slowly changing, low frequency) and fine-scale (rapidly changing 

details, high frequency) time series. A number of models based on frequency domain analysis 

have been proposed recently to simulate and predict the variability in the response (Fahimi, 

Yaseen, & El-shafie, 2017; Nguyen, Mehrotra, & Sharma, 2019; Quilty, Adamowski, & 

Boucher, 2019; Rashid, Johnson, & Sharma, 2018; Sang, 2013). Most of those applications 
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directly use the decomposed time series to forecast the target response (Quilty & Adamowski, 

2018; Rashid, Beecham, & Chowdhury, 2016). Jiang, Sharma, and Johnson (2020) proposed 

a new approach by using the decomposed time series to reconstruct a new set of predictor 

variables that can explain maximal information in the response. They showed that this 

approach can significantly improve the performance of the regression model, when applied 

firstly to synthetic data and a drought index downscaling case study at fifteen rainfall gauges 

in Sydney, Australia. However, the original method is limited to prediction problems where 

the future state of the predictors is “known”, which is due to the mathematical properties of 

the discrete wavelet transform (DWT). If a forecasting model is required then DWT is not 

suitable because this wavelet transform requires future information (which is not available in 

a forecasting setting) to predict the target response (Du, Zhao, & Lei, 2017; Quilty & 

Adamowski, 2018). To address this issue, other wavelet transformations can be used to 

implement the variance transformation, including the maximal overlap DWT (MODWT) and 

à trous algorithm (AT). In this case, DWT can be replaced with MODWT or AT, which have 

no dependence on future information (Nason, 2008; Quilty & Adamowski, 2018). Therefore, 

we have included the MODWT and AT based variance transformation into the WASP R-

package. Alternatively, when considering climate change projections, the DWT forecasting 

problem is overcome because reliable future projections of the predictors are available from 

GCMs although the target response is unknown or its projection is not reliable as shown by 

Rashid et al. (2018) and Fowler, Blenkinsop, and Tebaldi (2007).  

Another issue in using wavelet-based methods in real-world applications is the  edge effects 

resulting mainly due to limited sample sizes, also known as the error due to the boundary 

condition that is associated with wavelet decompositions, including wavelet and scaling 

coefficients (Percival & Walden, 2000). However, there are ways to reduce the effects of 

boundary bias in wavelet transformations. An estimator excluding the boundary coefficients 

is regarded as an unbiased wavelet variance estimator (Cornish, Bretherton, & Percival, 

2006). This logic can be applied to the proposed variance transformation method, which leads 

to an unbiased variance transformation. Thus, the methodological contributions of this study 

are to: (1) generalise the wavelet-based variance transformation method to allow it to be 

applied in forecasting problems and (2) develop an unbiased variance transformation. This 

substantially broadens the application of the proposed method across a wide range of systems 

beyond the simplified illustrations in Jiang et al. (2020).  
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The approach outlined above is embodied in the WAvelet System Prediction (WASP) R-

package, and consists of three key functions. The first function finds the optimal variance 

transformation for each predictor variable of interest, reconstructing a new predictor with 

complimentary spectral attributes to the predictand. The second function identifies significant 

reconstructed predictors using partial informational correlation (PIC). PIC is used to measure 

the dependence between a given response and the reconstructed new predictor conditioned to 

pre-existing predictor(s) (Sharma, 2000; Sharma & Mehrotra, 2014). The last function is the 

predictive model, which is a k-nearest neighbor (knn) estimator using a kernel regression 

function (Lall & Sharma, 1996; Sharma et al., 1997). An additional contribution here is that 

the knn estimator has been modified to better allow for extrapolation. 

In this study, we implement the MODWT-based and unbiased variance transformation in the 

R-package WASP and evaluate it on a large scale of hydro-climatological system. For 

instance, sustained droughts are natural hazards associated with a range of climatic factors 

such as low precipitation and high temperatures and potential evapotranspiration (Sheffield, 

2011). These climatic factors are in turn affected by large scale climate teleconnections which 

vary over periods of years to decades (e.g., El Niño Southern Oscillation and India Ocean 

Dipole) (Mishra & Singh, 2010), as well as long term trends from anthropogenic climate 

change (Dai, 2013; Sheffield & Wood, 2008). Thus, drought is a result of the interactions of a 

large number of variables all of which have very different spectral properties. Here the 

variance transformation method is demonstrated by modelling and predicting sustained 

drought anomalies for Australia as represented by the Standardized Precipitation Index (SPI). 

 

2. Methodology 

2.1 MODWT-based variance transformation  

In this section, we first introduce the original DWT-based variance transformation and then 

extend it to include the MODWT-based variance transformation. Full details and derivation 

of the variance transformation are provided in Jiang et al. (2020). A summary of the 

important steps is provided here. Consider a set of n paired centred (i.e., with mean of zero) 

observations of the predictor variable X and the response variable Y, i.e., 

0 0 1 1( , ), ,( , )n nx y x y− −K . First, the signal X is decomposed into a vector of coefficients matrix 

1=[ , , , ]J JW D … D A  with a dimension of 1n ×  using the DWT. The coefficients matrix is then 
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reconstructed into a matrix of frequency components 1[ ,…, , ]J JR= d d a , and the associated 

variance structure of these sub-time series is given by 
1

[ , , , ]
J J

T
d d aσ σ σ=I K  (Percival & 

Walden, 2000). This is so-called multiresolution analysis (MRA). Here, J is the highest 

decomposition level, which will be further discussed in the section of unbiased variance 

transformation. The property of DWT ensures that the sum of the variance of the sub-time 

series equals the variance of the original time series, which means 
1

2 2

1

1

1

J

j
j n

σ
+

=

= =
−∑ T

XI X X . 

Accordingly, X can be written as a matrix multiplication ˆX = RI  with the standardized 

reconstruction matrix 1
ˆ ˆ ˆ[ ,…, , ]ˆ

J J= d dR a . The variance transformation is achieved by 

reconstructing a new predictor X' with variance structure α similar to the corresponding 

response in the frequency domain. They can be written as: 

 
ˆ

ˆ
Xσ

′

=

X = Rα

α C
  (1) 

where Ĉ is the normalized covariance of the variable set ˆ( , )Y R , and the covariance C has 

the form of  

 
1

ˆ ˆ ˆ

1 ˆ , ..., , .
1 JJ

T
YaYd Yd

S S S
n

 = =
 −

C Y R   (2) 

Essentially, the reconstructed new predictor X' is obtained by redistributing the variance in its 

spectrum and it has the same total variance as the original predictor X. All potential 

predictors will be reconstructed with this operation, and a reconstructed new set of predictors 

is then used for predictor selection and response prediction. Assuming that the variance 

transformed predictor is used to predict the associated response with simple linear regression, 

we can derive the theoretical optimal prediction accuracy as measured by Root Mean Square 

Error (RMSE):  

 
22

min

1
( ),Y

n
RMSE

n
σ−= − C   (3) 

where Yσ  denotes the standard deviation of the response Y.  

The method originally proposed by Jiang et al. (2020) requires both additive decomposition 

(i.e., MRA) and variance decomposition (i.e., energy-based decomposition). To extend the 
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method to consider forecasting problems, the DWT can be replaced by wavelet approaches 

that do not include future time steps (such as MODWT and AT). However, for the above 

derivation to be valid then the new wavelet approaches need to also fulfill the requirement for 

additive and variance decomposition. Both MODWT and AT fulfill these two requirements 

only when the Haar wavelet filter (equivalent to Daubechies 1, db1 or d2) is adopted. When 

the Haar wavelet filter is used MODWT and AT are equivalent (i.e., lead to the same 

decomposed frequency components). Therefore, for forecasting applications, WASP has been 

extended to include MODWT with the Haar wavelet filter as the basis for the variance 

transformation. There is a potential risk that the spectrum of the variables of interest cannot 

be characterized well because the wavelet filter is limited to the Haar wavelet filter. However, 

the logic can be applied to both MODWT and AT when other wavelet filters are adopted, as 

they provide additional ways to characterize the spectrum of variables of interest.  

Another advantage of using MODWT is that there is no restriction on the dyadic sample size. 

Briefly, MODWT decomposes the original time series X into a ( 1)n J× +  matrix of wavelet and 

scaling coefficients 1=[ , , , ]J JW D … D A%% % % , and the associated standard deviation matrix is given 

by 
1

[ , , , ]
J J

T
D D A

σ σ σ=I
% % %

%

K . MODWT also ensures variance decomposition, which means 

1
2 2

1

1

1

J

j
j n

σ
+

=

= =
−∑ T

XI X X% . This provides a way to investigate and transform the variance 

structure of the coefficients matrix, W% , directly. As a result, using the covariance C of the 

variable set ˆ( , )WY %  the variance transformed X'  can be obtained given by the equation: 

 
ˆ

ˆ
Xσ

′

=

X =Wα

α C

%

  (4) 

where Ŵ%  is the standardized coefficients matrix W% . It is noted that the coefficients matrix 

W  decomposed from DWT has the dimension of 1n ×  while the coefficients matrix W%  

from MODWT has a dimension of ( 1)n J× + . Expect for the independence on future 

information, this is another reason the coefficients matrix of MODWT can be directly used 

for variance transformation.  
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2.2 Unbiased variance transformation 

The second methodological contribution of this study is to solve the issue of boundary bias in 

applying wavelet-based methods. Boundary related issues are due to sample size, the choice 

of decomposition level, as well as wavelet filter. Table 1 summarizes the size of the boundary 

effects for both types of wavelet transforms. As shown in the table, the number of non-

boundary coefficients depends on the sample size (N), the decomposition level (j), and the 

width of wavelet filter (L). The multiresolution analysis of DWT is affected at the beginning 

and the end of the sub-time series while MODWT is only affected at the start of the 

decomposed components. It is clear that shorter wavelet filter, longer time series or lower 

decomposition level leads to a smaller number of boundary coefficients. In wavelet theory, 

the exclusion of boundary coefficients in wavelet variance estimation is called unbiased 

estimator (Cornish et al., 2006). There is a smaller difference between biased and unbiased 

estimates when fewer boundary coefficients need to be excluded.  

Here we propose to adopt the unbiased variance transformation by computing the covariance 

using only the non-boundary coefficients as follows:  

 1 ˆ
1

T

n
∗ ∗=

−
C Y R   (5) 

where the asterisk * implies the unbiased value. ˆ ∗R  (or Ŵ ∗
% ) is the standardized matrix 

excluding boundary coefficients, and ∗C  is a vector of unbiased covariance. It is worth noting 

that the unbiased estimator can only be computed for some decomposition levels. However, 

the nature of variance transformation requires greater decomposition levels thus we still use 

the biased estimator whenever the unbiased estimator is not available. The introduction of 

unbiased variance transformation is not likely to change the model performance substantially 

when a shorter wavelet filter is used and larger sample size is available.  

Table 1 Summary of the size of boundary effects 

Wavelet Method Beginning of the signal End of the signal 
Total number of  

boundary coefficients 
Non-boundary 

coefficients 

DWT-MRA t=0,1,…, L
j
-2 t=N-1, N-2, …, N-L

j
+1 2(L

j
-1) N-2(L

j
-1) 

MODWT t=0,1,…, L
j
-2 - L

j
-1 N-L

j
+1 

Note: The width of the j-th level wavelet or scaling filter L
j
 = (2

j
-1)(L-1)+1, where L is the width of the j=1 base 

filter. 
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2.3 Partial informational correlation  

The wavelet-based variance transformation approach adopts PIC, which takes the partial 

dependence between predictors and the response into account to identify significant (in this 

case variance transformed) predictors. A short description of the logic behind PIC is 

presented here, and readers are referred to Sharma (2000), Galelli et al. (2014) and Sharma 

and Mehrotra (2014) for additional details, as well as to Sharma, Mehrotra, Li, and Jha 

(2016) for the software, known as NPRED, needed to estimate the PIC.  

The partial information (PI) is based on information theory and measures the dependence 

between the response Y and a potential predictor X of the response given pre-existing 

predictor(s) Z. Thus, a sample estimate of ( , | )PI Y X Z  is written as:  

 $
| , |

1 | |

( | , | )1
( , | ) log [ ]

( | ) ( | )

n
Y X i i

e
i Y i X i

f Y X
PI Y X

n f Y f X=
= ∑ Z Z

Z Z

Z Z
Z

Z Z
  (6) 

where Yi and Xi is the i-th bivariate sample data pair in a sample of size n. |Y Z  and |X Z  

are partial response and partial independent variable, which represent the residual information 

in variables Yi and Xi, when the effect of pre-existing predictor(s) Z has been taken into 

account. | ( | )Y if YZ Z , | ( | )X if XZ Z  and | , | ( | , | )Y X i if Y XZ Z Z Z  are the respective marginal and 

joint probability densities using kernel density estimation. The PI can be scaled to the range 

from 0 to 1, which is introduced as the PIC:  

 $ $1 exp( 2 )PIC PI= − −    (7). 

Thus, the PIC is a generic measure of conditional dependence, where 0 represents no 

dependence and 1 represents perfect dependence. A measure of statistical significance for the 

PIC is also required,  

 21

m
t PIC

PIC
=

−
  (8) 

where t follows the Student’s t distribution with m=n-l degrees of freedom, with n being the 

number of observations and l the number of conditioning variables. This is used for the 

stopping criterion when selecting the significant predictor variable(s). Given a certain 

significance level p (we used p=0.1 in the case study), when the estimated PIC is smaller than 
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an associated threshold PICp for all the remaining partial predictors, the selection process will 

be terminated.  

 

2.4 Modified k-nearest neighbor regression estimator  

Selecting a predictive model is generally based on the nature of the modelling system as well 

as the modeler’s experience. Regression methods have been widely solved by using the 

parametric least squares estimator approach. Non-parametric models can also be used with 

the advantage that fewer assumptions about the distribution of the population are required. In 

this study, the nonparametric knn method was used for prediction.  

The key of the knn method is to find the closest observations to x in the training dataset to 

form Ŷ. Specifically, the knn fit for ̂Y is defined as follows:  

 
( )

1ˆ( )
i k

i
x N x

Y x y
k ∈

= ∑   (9) 

where ( )kN x  is the neighbourhood of x defined by the k closest points ix  in the training 

sample (Friedman, Hastie, & Tibshirani, 2001). The closeness is a distance metric, which can 

be defined by Euclidean distance, as well as a range of alternate distance metrics 

(Weinberger, Blitzer, & Saul, 2006). Mehrotra and Sharma (2006a) argue for the use of a 

weighted Euclidean distance using a discrete kernel, K(i) with weights estimated based on the 

partial importance each predictor exerts on the response. In this current study, a linear 

extrapolation of the associated response based on the covariance of the predictor-response 

dataset was implemented. This is required because when considering climate change 

projections future predictor values may exceed the range of the observed data over which the 

knn model is trained.  This subtle modification is based on the kernel regression as described 

by Sharma et al. (1997):  

 

1

( )

1

1ˆ( ) ( ( ))
( )

1 /
( )

1 /

i k

T
i xy xx i

x N x

k

i

Y x y S S x x
K i

i
K i

i

−

∈

=

= + −

=

∑

∑

  (10) 

where Sxy and Sxx represent the covariance matrix for the variable set (x, y) and (x, x), 

respectively.  
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3. WASP R-package structure 

3.1 Details of the software 

Figure 1 is a flowchart of the proposed method, showing the general process that is required 

for the variance transformation technique. This algorithm is implemented in the R library 

WASP software. A detailed help-file for each function and test data are provided in the 

package as well.  

 

 

Figure 1 Flowchart of the proposed variance transformation method  
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In summary, the R package consists of built-in functions for variance transformation 

operation for calibration (“dwt.vt”, “modwt.vt”, and “at.vt”) and validation (“dwt.vt.val”, 

“modwt.vt.val”, and “at.vt.val”) based on DWT, MODWT, and AT, respectively; the option 

of unbiased variance transformation for each variance transformation method is included in 

these functions with flag = c(“biased”, “unbiased”); and the modified knn regression 

predictive model (“knn”). There are several supplementary functions, including padding 

function (“padding”) which extends the data to provide a dyadic sample size for the DWT-

based variance transformation, and three synthetic data generator functions used in Jiang et al. 

(2020). Each of these codes come with associated help-files that provide guidance on their 

use. As described in the following section, datasets from the drought prediction case study are 

provided in the package, and all the results reported in this paper are reproducible using 

RMarkdown provided in the vignettes of this R-package. Figure 2 is a screenshot of the 

sequence of R commands illustrating the usage of the WASP package to transform the 

potential predictors (see Figure S 1 in the Supporting Material for an example of predictor 

variables before and after variance transformation corresponding to the response), identify the 

significant predictors, and predict the associated response. MODWT is adopted as the basis 

of wavelet transform in this case study since we are using observed data to predict target 

response and thus there is no dependence on future information. All codes and data in the 

package are open source. 
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Figure 2 Example of typical usage of modwt.vt and modwt.vt.val for the real case study at a sampled grid. Here the task is to 

transform potential predictors (climate indices), identify the significant predictors, and predict the associated response 

(SPI12) using a modified knn model. Note that the predictor selection uses the stepwisePIC function directly from the 

NPRED package.  

It should be noted that when applying this method to forecast a future response, we assume 

that the conditional dependence between the predictor variables and the response remains 

unchanged into the future. Thus, the covariance between the response and wavelet 

decompositions of predictor variables from historical data is used for future predictions as 

well as the fitted predictive model. To check the validity of this assumption, we use cross-

validation by partitioning the historical data into four complementary subsets. One subset is 

used as the validation set while other subsets are used as the calibration set. The results 

presented hereafter are cross-validated results for the entire period. The rationale for using 

cross-validation is that we can have a better assessment of the model performance with 

independent datasets (Mehrotra & Sharma, 2006b; Nguyen et al., 2019). It is important to 

note however that in the context of anthropogenic climate change, the range of future changes 

will likely exceed those observed in the past so the cross-validation is not a perfect test of our 

stationarity assumption for the predictor-response dependence structure. 
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3.2 Prediction of Standardised Precipitation Index over Australia  

The WASP package was applied to predict the SPI using various climate indicators over 

Australia to assess the impact the variance transformation makes. We adopted climate 

indicators used in previous prediction of sustained hydrologic anomalies using the SPI 

(Rashid, Sharma, & Johnson, 2020) and further expanded this dataset by including additional 

climate drivers strongly influencing Australia climate (Cai & Cowan, 2013; Kirono, Chiew, 

& Kent, 2010; Murphy & Timbal, 2008). Table 2 lists the details of the climate indices 

considered in this study. The monthly anomalies of Nino3.4, PDO, and DMI are derived from 

monthly sea surface temperature (SST) values of Hadley Centre Global Ice and Sea Surface 

Temperature (HadISST) datasets (Rayner et al., 2003). SAM is calculated using sea level 

pressure (SLP) from NOAA Earth System Research Laboratory's Physical Sciences Division 

(PSD). The Australian Water Availability Project (AWAP) gridded monthly rainfall metadata 

is obtained from the Bureau of Meteorology (Jones, Wang, & Fawcett, 2009) and is regarded 

as observations. The rainfall data was re-gridded to 2.5° × 2.5° over Australia using weighted 

area average and the SPI for 12-month and 36-month periods (SPI12/SPI36) is calculated 

(McKee, Doesken, & Kleist, 1993). Note that grid cells where more than 25% of rainfall 

values are zero or missing are removed from the calculations due to data reliability concerns 

(Spinoni, Naumann, Carrao, Barbosa, & Vogt, 2014). As described previously, we split the 

data into four equal subsets for cross-validation. The study period was 1910 to 2009. 

Table 2 List of atmospheric variables considered in the study   

Index No. Climate Indicator  Abbreviation 

1 
East Central Tropical Pacific, the area averaged SST from 5S-5N and 170-
120W. 

Nino3.4 

2 
Pacific Decadal Oscillation, the leading PC of monthly SST anomalies in the 
North Pacific Ocean 

PDO 

3 
Southern Annular Mode, the difference of zonal mean SLP between 40°S and 
65°S 

SAM 

4 

Indian Ocean Dipole, the anomalous SST gradient between the western 
equatorial Indian Ocean (50E-70E and 10S-10N) and the south eastern 
equatorial Indian Ocean (90E-110E and 10S-0N), named as Dipole Mode 
Index 

DMI 

 

First of all, significant climate indicators were identified at each rainfall grid over Australia 

using PIC from the set of four variance transformed climate indices. In Figure 3, the most 

significant drivers (i.e., the most frequently selected predictor in the PIC process among the 

four cross-validation subsets) for both SPI12 and SPI36 are shown. In addition, four 

randomly chosen grids that are used to examine the results in detail in this study are 
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highlighted with grid index numbers in red color (refer to Figure S 2 in the Supporting 

Material for the complete overview of grid index over Australia). Table 3 summarizes the 

most significant climatic driver selection using both original and variance transformed (VT) 

climate indices (see Figure S 3 in the Supporting Material for the selection results using 

original climate indices).  

As expected based on previous research, drought in Australia is significantly influenced by El 

Niño–Southern Oscillation (ENSO) (Cai, Van Rensch, Cowan, & Hendon, 2011; Fierro & 

Leslie, 2013; Pui, Sharma, Santoso, & Westra, 2012; Westra & Sharma, 2010). For SPI12, 

most grids (83%) are influenced by ENSO, and more than half of grids (89%) are sensitive to 

ENSO for SPI36. On the other hand, the selection results using original climate indices are 

similar (i.e., ENSO is the main climatic driver of Australia rainfall) with less grids affected 

by ENSO particularly for SPI36. One interesting observation is that there are several grids 

where no climate drivers are identified as useful for prediction if the original (untransformed) 

climate indices are used because of the discrepancies in the temporal scale of the response 

and the potential predictors. This demonstrates the advantage of variance transformation 

technique in selecting predictor variables (Jiang et al., 2020). Another interesting outcome is 

that the use of the variance transformation leads to a reduced selection of non-Pacific 

variability indicators such as DMI and SAM in the resulting model, with these variables 

being relegated to second or higher order predictors in the ensuing model. 

 

 
Figure 3 The most significant predictors identified using variance transformed climate indices over Australia for different 

time scales of SPI. (a) SPI12; (b) SPI36. Four randomly sampled grids investigated in the study are indicated in red color.  
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Table 3 Number of grid cells with significant order 1 predictor variable of SPI over Australia with and without variance 

transformation 

Drought 
Index Model Nino34 PDO SAM DMI Total 

(138) 
SPI12 VT 114 14 7 3 138 

SPI36 VT 123 11 4 0 138 

SPI12 Original 98 13 12 13 136 

SPI36 Original 63 38 22 12 135 

 

Figure 4 (a) and (c) present the density plots of observed, predicted and predicted with 

variance transformation SPI at the four randomly sampled grids. It is clear that the probability 

distributions of predicted SPI using variance transformed predictors are closer to observed 

SPI in the sampled grids. Its closeness can also be measured by the PDF skill scores (Perkins, 

Pitman, Holbrook, & McAneney, 2007), which are shown in Figure 4 (b) and (d). The value 

of a PDF skill score ranges between 0 and 1, and 1 represents a perfect match. These results 

suggest that the wavelet-based approach can capture sustained drought/wet anomalies well. A 

close look at the selection results in Table 4 provides more information about the benefits of 

the proposed method. First, additional climate indices can be selected, which is likely to 

result in considerable improvements at all grids. Second, even when the same predictor 

variables are selected (as the case in Grid 94 for both SPI12 and SPI36), the variance 

transformation leads to improved characterisation of sustained anomalies. Only a small 

improvement is observed at Grid 142 for SPI12 after applying variance transformation 

because at this location reasonably good skill was obtained from the original predictors.  
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Figure 4 Comparison between observed, predicted and predicted with variance transformation drought indices at four 

sampled grids. SPI12: (a) Density plot (b) PDF skill scores; SPI36: (c) Density plot (d) PDF skill scores. 

Table 4 Rank of identified climate drivers by frequency at four sampled grids 

Grid Drought 
Index Model Nino34 PDO SAM DMI 

94 
SPI12 

Original 1 3 4 2 

VT 4 1 2 3 

SPI36 
 

Original 1 4 2 3 

VT 1 2 3 4 

142 
SPI12 

Original 1 - - 2 

VT 1 3 2 4 

SPI36 
Original 1 3 2 - 

VT 1 2 3 4 

149 
SPI12 

Original 1 2 - - 

VT 1 4 2 3 

SPI36 
Original - 1 - 2 

VT 1 2 3 4 

177 SPI12 Original 2 1 3 - 
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VT 1 2 3 4 

SPI36 
Original - 2 3 1 

VT 1 2 3 4 

 

Figure 5 (a) and (c), the improvement in PDF skill scores (percentage relative to non-wavelet 

models) for both SPI12 and SPI36 over Australia is presented. The wavelet-based method 

provides improvements at around 99% and 97% of grids for SPI12 and SPI36, respectively. 

Grids with white areas represent grids with missing data located in the central and western 

desert of Australia (Jones et al., 2009), while grids with black dots refer to locations with no 

improvements after variance transformation is used. Further, scatterplots in Figure 5 (b) and 

(d) provide the magnitude of PDF skill scores at all grids over Australia, and the model using 

the proposed variance transformation technique outperforms the reference model using 

original climate indices. The biggest improvements tending to occur for locations that had 

lower skill with the non-wavelet model consistent with the results discussed above for Grid 

142. It is noted that the improvements in prediction performance of SPI36 are larger than for 

SPI12, which results from possibly identifying and characterising one of the known major 

drivers of droughts in Australia (i.e., ENSO) using variance transformed climate indices.  

What we have shown here represents the results of the MODWT-based biased variance 

transformation, with the results using the unbiased estimator being given in Figure S 4 of the 

Supporting Material. In addition, boxplots in Figure 6 compare the model performance 

between approaches using biased and unbiased estimator. First, the unbiased variance 

transformation does show improved prediction accuracy with all grids presenting 

improvements while with the biased variance transformation there are several grids perform 

worse than the reference model. Second, the unbiased variance transformation shows better 

mean statistics in both drought indices with greater improvements in SPI36. There is no 

significant difference in the two, which is due to the fact that the Haar wavelet filter has been 

used and large sample size is available in this case study.  
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Figure 5 Comparison of PDF skill scores between original and variance transformed (VT) predictors with MODWT-based 

biased variance transformation. SPI12: (a) The percent improvement of PDF skill scores over space (b) Scatterplot of PDF 

skill scores; SPI36: (c) The percent improvement of PDF skill scores over space (d) Scatterplot of PDF skill scores.  
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Figure 6 Comparison of model performance between approaches using biased and unbiased estimator. Blue dots represent 

the mean value of PDF skill scores.  

 

Meanwhile, we have also done the experiments under two folds cross-validation with varying 

wavelet filter length seen in Table 5. The results of PDF skill scores show that first, the 

unbiased variance transformation approach outperform its alternative in both mean and 

median statistics; second, larger differences between two estimators are observed when we 

adopt wider wavelet filters in both mean and median statistics given the similar standard 

deviation (SD) across all grids. It should be noted that there is an exception when using d8 for 

SPI12 (median) and SPI36 (mean) prediction the difference of statistic gets smaller, which is 

likely due to the violation of additive decomposition when other wavelet filters are adopted. 

However, the results we show here confirm the argument that MODWT or AT can be applied 

as the basis for variance transformation even when wavelet filters other than the Haar are 

adopted.  
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Table 5 Comparison of biased and unbiased variance transformation approach with varying wavelet filter length 

Metric SPI Wavelet 
filter 

Decomposition  
levels (J) Biased Unbiased Difference   

(Unbiased-Biased) 

Mean 

12 

Haar(d2) 9 0.664 0.672 0.008 

d8 8 0.658 0.685 0.027 

d16 7 0.635 0.652 0.017 

36 

Haar(d2) 9 0.679 0.699 0.020 

d8 8 0.716 0.718 0.002 

d16 7 0.697 0.719 0.022 

Median 

12 

Haar(d2) 9 0.659 0.678 0.019 

d8 8 0.664 0.680 0.016 

d16 7 0.632 0.653 0.021 

36 

Haar(d2) 9 0.684 0.703 0.019 

d8 8 0.703 0.724 0.021 

d16 7 0.698 0.726 0.028 

SD 

12 

Haar(d2) 9 0.065 0.068 0.003 

d8 8 0.060 0.075 0.015 

d16 7 0.065 0.071 0.006 

36 

Haar(d2) 9 0.069 0.072 0.003 

d8 8 0.064 0.068 0.004 

d16 7 0.068 0.070 0.002 

 

4. Summary and conclusions 

The open-source WASP R-package contains the codes, sample datasets and help-files for 

natural system prediction. We introduce the MODWT-based variance transformation, which 

resolves the issues of future dependence. Moreover, the boundary related bias is addressed 

using a newly proposed unbiased variance transformation. Both improvements have 

broadened the application of wavelet-based variance transformation method. The use of the 

wavelet-based variance transformation technique is demonstrated by predicting a drought 

index over Australia using various climate indices, but the logic represents a generic 

approach not limited to modelling hydro-climatological systems alone. This approach has 

shown substantial improvements in predictive accuracy especially in systems where the 

response and plausible predictor variables have large differences in their spectrums.  

It is worth noting that this method provides a way to predict a target response in a complex 

system without making assumptions and simplifications including characterising the form of 

the underlying model that relates the two. This is implicitly undertaken by the variance 

transformation technique thereby formulating a transformed predictor that can be expected to 

Jo
urn

al 
Pre-

pro
of



22 
 

have a concurrent relationship with the response ensuring improvement of predictivity in the 

complex system. However, the proposed approach has its inherent limitations and should be 

applied with care. First, the boundary related bias is a curse, thus the selection of wavelet 

family and the length of filters should be realistic given the nature of the physical 

phenomenon with varying data length (Bakshi, 1999; Maheswaran & Khosa, 2012; Percival 

& Walden, 2000; Torrence & Compo, 1998). In addition, the rule of thumb of the 

decomposition level by Kaiser (2010) is preferred such that the variance transformation is 

done across the entire spectrum of the predictor variables (Jiang et al., 2020).  

Lastly, while the logic presented here focusses on the modelling of a single response, 

extensions to modelling multiple responses are possible. Future extensions of the proposed 

logic will illustrate how we can extend the approach here to multiple response variables, 

while keeping the dimensionality of the predictive system small enough to maintain 

robustness in predictions. 
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Supporting Material 

 

Figure S 1 Example of predictor variables before (solid red line) and after (dashed blue line) variance transformation 

corresponding to the response SPI12 (solid black line) at a sampled grid. (a) Calibration (b) Validation 

 

 
Figure S 2 Map of grid index over Australia. Grids with missing data (i.e., where more than 25% of rainfall values are zero 

or missing) are in white colour, while the investigated four randomly sampled grids are highlighted in red colour.  
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Figure S 3 The most significant climate indices identified using original climate indices over Australia for different time 

scales of SPI. (a) SPI12; (b) SPI36. Note that girds with black dots refer to locations with no predictors being identified.  

 

Figure S 4 Comparison of PDF skill scores between original and variance transformed (VT) predictors with MODWT-based 

unbiased variance transformation. SPI12: (a) The percent improvement of PDF skill scores over space (b) Scatterplot of 

PDF skill scores; SPI36: (c) The percent improvement of PDF skill scores over space (d) Scatterplot of PDF skill scores.  
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Highlights:  

• Open source R-package WASP for modelling and predicting natural system responses.  

• The package modulates the variance in wavelet transformations to improve the match 

between predictors and the response of interest.  

• The inclusion of an alternative wavelet transform overcomes the issue of future 

information dependence in discrete wavelet transform.  

• The approach is demonstrated with an application to characterise drought using 

climatic indicators across Australia. 
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